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350 µm kernel
 500 µm kernel




Note: Model contains ~ 800 nodes 
and takes about 2- 8 hours to run


Standard/Nominal Particle is in compression; Particle with Cracked IPyC 
has SiC layer in tension 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  Finite element based 
calculations of stress state 

  Aspect ratio is a function of 
particle size 

  Influence of pressure is very 
strong  

  Could become important as 
coated particle fuel is pushed 
to high burnup or high 
temperature (accidents) 
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SiC failures due to debonding
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  500 µm kernel 
  973 K and 1473 K 
  Anisotropy (BAF) = 1.06 

and 1.03 
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Radial Change at 1032°C
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Comparison of Radial Shrinkage/Swelling PyC Data
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  CTE is different in the 
two orientations in PyC 
and depends on the 
anistropy of the material.  
Effect of irradiation is 
unknown 

  Elastic modulus is a 
function of anisotropy, 
fluence, density and 
temperature 



SiC Tangential Stress  -  Irradiation Followed by Heatup
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PyC Material properties are critical and highly uncertain!


-

-


-





Author            Creep constant (> 0.18 MeV) 
                              (x 10-29 MPa n/m2) -1 

Kaae et al. (1972)     1.0  
Price and Bokros (1967)   1.3 
Buckley et al (1975)   4.8 
Buckley et al. (1975)   4 
Brocklehurst and Gilchrist (1976)  3.3 

                 & 1.7 
Morgand (1975)    13.2 

SiC Stress in Cracked Particle at 
1200°C using different PyC creep data 


Using historical 
creep value of 
4.29 *1027 (psi-
nvt)-1 from GA


Using new creep value 
of 1.4*1027 (psi-nvt)-1 
based on broad 
assessment of data 
from GA in 1993


Note: STRESS3 code uses 3.4 *1027 (psi-nvt)-1 






Case
IPyC Stress (MPa,

tension)
SiC Stress (MPa,

compression)
νc = 0.5 νc = 0.4 νc = 0.5 νc = 0.4

Nominal, T
= 1273°K

475 351 847 697

Nominal, T
= 873°K

627 488 1107 948

NPR-1 A9 430 307 784 610
NPR-2 A4 599 449 1101 895

Note: range of values in literature is from 0.3 to 0.5












CO per Fission vs. Temperature, e=10%, 
UC2=0%
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  Migration in a temperature gradient 
to the hot side 

  Depends on temperature gradient 
and temperature 

  Data exist for UO2, ThO2,(U,Th)O2, 
and UC2: both HEU and LEU 
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Capsule Max. 
Avg. 
Temp. 

UO2 Peak 
Burnup 
(%FIMA) 

Kernel  
Migration 

Max. 
Avg. 
Temp. 

UCO Peak 
Burnup 
(%FIMA) 

Kernel  
Migration 

HRB-14 1070°C 29.5 16 µm 1100°C 28.6 none 

HRB-15A 1125°C 28.5% ≤ 30 µm in 22% 1110°C 25 none 
HRB-16 1150°C 27.8 20-55 µm 1105°C 27 none 

Data provided by GA




  Theoretical estimates (Olander) of swelling range from 0.3 to 0.45% ΔV/V per 
atom percent burnup.   

  Experimental measurements suggest even larger values 0.6-1.5% Δ V/V per 
atom percent burnup (probably due to intergranular fission gas bubbles) 

  At 20% FIMA, this corresponds to 6 to 30% increase in volume of kernel 
  Large amount of swelling can reduce void volume in particle and under some 

conditions cause kernel/coating mechanical interaction 

–  Buffer layer tends to show largest 
distribution in thickness because of 
speed of coating. 

–  Monte Carlo simulations suggest 
that large fraction of buffers with 
thin coatings are subject to this 
potential interaction 

–  Particle redesign (thicker buffer or 
reduced variation in thickness) may 
help ameliorate this concern. 

Example of coating/
kernel mechanical 
interaction from 
STRESS3 calculation
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 Results from finite element analyses 
on multi-dimensional particles are 
used in conjunction with results from 
a one-dimensional solution to 
estimate stresses in any random 
particle 

 

– Monte Carlo (MC) method – statistically samples a 
large population of particles considering statistical 
variations among particles  

– Integration approach – integrates failure probability 
over parameter space, considering the same 
statistical variations  

• Can be much faster tha n MC, depending on 
how many parameters are varied  

• Serves to verify MC  results and vice versa  
– Conceptually the two methods give identical results - 

when the sample size for the MC method is large, 
then MC takes longer and integration method is 
more efficient  
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  Key thermal resistance is the gap that develops as buffer shrinks under 
irradiation, increasing with neutron fluence (dose) 

  The gap fills with fission gas and CO (for UO2) and the mixture is a function of 
burnup 

  Thermomechanical response of the buffer and the resulting gap size depends 
on the boundary conditions (restrained vs. unrestrained buffer) 

  Peak kernel temperature is thus a function of burnup, fluence and power per 
particle 

UO2 / (250 µm) 
Porous Carbon / (80 µm) 
Gap / (~15-20 µm) 
Pyrolitic Carbon / (40 µm) 
SiC / (35 µm) 

Material / layer thickness 



Nominal Experimental Conditions

1200

1250

1300

1350

1400

1450

1500

0 2 4 6 8 10 12 14 16 18 20

Burnup (%FIMA)

K
er

ne
l c

en
te

rli
ne

 te
m

pe
ra

tu
re

 (o C
)

400 mW/particle 225 mW/particle 100 mW/particle 50 mW/particle

  Gap grows with fluence and is 
filled with fission gas as burnup 
increases 

  Very high kernel temperatures 
seen for high powers 

  AGR-1 expected to remain 
below 200 mW/particle 

  Volume average temperature of 
compact is 1250°C (outside 
OPyC temperature) 

  Lower power particles take 
longer time to reach peak 
burnup and thus acquire 
greatest fast fluence 
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PARFUME calculates that ~ 20 micron gap develops in each particle 
because of dimensional changes in buffer and IPyC and kernel 
swelling. 

22.3 kW/cm3


7.6 kW/cm3




  With high burnup LEU, 25 to 50x more Ag and Pd are produced 
than in either HEU or LEU low burnup fuels because of the large 
fraction of fissions from Pu that are expected at high burnup.   

  Could result in greater Ag release and higher potential for Pd 
attack of the SiC 

  Ag release may be as a result of Knudsen diffusion via nano-
sized passages (cracks, pores). Unclear if this can be remedied 
in the fuel per se 

  Data from postirradiation examination will provide estimates of 
the magnitude of the problem 

  Available in-pile data suggest that Pd attack on the SiC is a 
function of temperature.  The number of attack sites at the SiC 
is a weak function of the Pd concentration. No direct correlation 
with burnup or fast fluence 

  Accident heatup testing of high burnup LEU fuel compacts will 
determine if Pd attack is a problem for NGNP 



  Pd/SiC interactions have been the 
subject of extensive study. 
Reviewed international historical 
database 

  Selected irradiation data from UO2 with some UC2. (both irradiation 
capsules and FSV data) 

  Temperatures from ~ 950 to 
1550°C 

  No concentration (burnup) or 
kernel composition dependence 
observed 

  Arrhenius temperature 
dependence. Activation energy of 
~ 94 kcal/mole 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

4 5 6 7 8 9
1/Temperature (1E4/K)

Pd
 P

en
et

ra
tio

n 
R

at
e 

(u
m

/h
ou

r)

Montgomery
Tiegs
Lauf
Minato
Combined data fit
Expon. (Combined data fit)



Reaction 
Zone Type


Finite Element Model
 Size of Zone 

(µm x µm)


Calculated Failure 
Probability


Base - 1
 5.8 × 104
 1.78 × 10-4


Base - 2
 11.7 × 104
 3.00 × 10-4


Very Wide
 5.8 × 279
 1.62 × 10-3


Narrow - 1
 23.3 × 17.4
 9.38 × 10-6


Narrow - 2
 23.3 × 34.8
 2.65 × 10-5


Multiple
 23.3 × 34.8

5 places
 9.7 × 10-5
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Thoughts on Fission Product Modeling 
and Mechanisms: Gases


Kernel


Buffer


IPyC


SiC


OPyC


Gases: Kr,Xe, Ag
Structure


Ceramic 
collection of 
grains and 
grain 
boundaries


Porous carbon


High density 
layered carbon 
structure


Polycrystalline 
small grained 
structure


Same as IPyC


Diffusional transport of atoms and bubbles from the 
grains to the grain boundaries. When grain 
boundaries interconnect, large release.  Booth 
equivalent sphere model is used and well accepted.


Rapid Knudsen diffusion through the porosity


Much slower Knudsen diffusion through the small 
amount of porosity. Need to know interconnected 
porosity and tortuosity of the material. At high 
temperature, bulk diffusion may also be important.


Much slower Knudsen diffusion through the small 
amount of porosity. Need to know interconnected 
porosity and tortuosity of the material.


Slower Knudsen diffusion through any porosity and 
or defects in the layer. Need to know interconnected 
porosity and tortuosity of the material.  Bulk diffusion 
may become important at high temperature 




Thoughts on Fission Product Modeling 
and Mechanisms: Condensible FPs


Kernel


Buffer


IPyC


SiC


OPyC


Condensible:Cs, Sr, Pd (?)
Structure


Ceramic 
collection of 
grains and grain 
boundaries


Porous carbon


High density layered 
carbon structure


Polycrystalline small 
grained structure


Same as IPyC


Diffusional transport of atoms to the grain boundaries.  Grain 
boundary diffusion to the surface.


Rapid diffusion through the porosity


Elements like Cs will intercalate in between the layers.  
Transport is a diffusion and trapping type mechanism, probably 
along the edges of the carbon grains.  Need to understand the 
nature of the chemical bonding and the details of the 
microstructure.  At high temperature, bulk diffusion may also 
become important.


Same as OPyC however trapping and intercallation effects 
may be more important given the lower concentration of fission 
products expected in this layer compared to IPyC.


Most likely grain boundary diffusion is operable at low 
temperatures. Bulk diffusion may become important at high 
temperature.  Need to know the area fraction occupied by 
grains and boundaries and individual diffusivities of  the 
boundary and the bulk to set up a parallel path  diffusion 
model.  Can be done in TMAP.
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  Large amount of data available for UO2 from LWR experience 
  Gas in the fuel kernels migrate to grain boundaries and form 

bubbles.  Release is determined by time at temperature. 
  These bubbles form an interconnected porosity and are released 

from the kernel at higher burnups 
  German, US and UK models use the classic Booth equivalent 

sphere diffusion model.  Differences in the diffusivity values used. 
  Impact on results in terms of fractional release of gas from the 

kernel is fairly small under gas reactor conditions at high burnup 


 
 
Fission Gas Release Fraction


 
 
     German Fuel 
 
US HEU (NPR)


Burnup/Temp./Time 
(8.5% FIMA/1173 K/3yr) 
(79% FIMA/1473K/3 yr)

PARFUME (US) 
 
 
.23 
 
       .86


MINIPAT (UK) 
 
 
.33 
 
       .95




  Fission gas release - 
Equivalent Booth 
Equivalent Sphere 
Model; Diffusivities 
based on Turnbull 

  CO production based on 
thermodynamic 
calculations as function 
of burnup, temperature, 
enrichment and fuel 
composition (O/U, C/U) 

EU1 at 10% FIMA (Ideal Gas Law)
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  Depends on Kn number 
  Need to know pore size, porosity, and tortuosity of the PyC 
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  Transport through 
nanopores, DKn~2 to 
3x10-7 m2/s 

  Transport through cracks 
(~1 micron), D ~ 10-4 
to10-3 m2/s 

  Such rapid transport is 
typical of buffer but does 
not fit with measured 
effective diffusivities in 
PyC and SiC 

Typical Pore 
size


Typical Crack 
size




Older permeability estimates of CO2 and He on PyC


Knudsen diffusion through nanopores
 Viscous diffusion through microcracks




Account for multiple grains and their random orientation 

Idealized large 
columnar structure


Idealized laminar 
structure


Small grain 
structure


These two mixture rules will bound behavior of small crystal SiC


€ 

Deff =Dv(1− f ) + Dgb f
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Deff =
DvDgb

Dv(1− f ) + Dgb f



C and Si self 
diffusion in β-SiC


Cr and Fe grain boundary  
diffusion in β-SiC


B and B+C grain boundary 
diffusion in α-SiC






CO

Fission


Gas


Total






Case
 Description


IPyC/SiC  
Bond 

Strength 
(MPa)


Probability of


Failure


Failure due to


IPyC 
Cracking


IPyC 
Debonding
Amoeba


IPyC 
Cracking


IPyC 
Debonding
 Pressure


9
 HRB-22
 100
 4.3e-9
 0
 4.3e-9
 0
 0
 0.17
 0


10
 HFR-K3
 100
 1.5e-7
 0
 1.5e-7
 0
 0
 0.27
 0


11
 HFR-P4
 100
 3.6e-5
 0
 1.4e-7
 0
 3.6e-5
 0.26
 0


12
 NPR-1
 70
 6.0e-4
 0
 4.6e-4
 1.4e-4
 0
 0.63
 0.36


13
 HFR EU-1
 100
 7.3e-4
 0
 1.3e-7
 0
 7.3e-4
 0.27
 0


14
 HFR EU-2
 100
 7.2e-8
 0
 7.2e-8
 0
 5.9e-10
 0.24
 0
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  PARFUME is a mature code and the level of configuration control is being 
increased since it will be released outside INL in early FY-10 

  PARFUME models the thermomechanical response of coated particle fuel in 
detail. Fission product transport models are under development and 
verification now. 

  PARFUME predictions are limited by the current material property database. 
New measurements are underway or planned to improve the database 

  PARFUME has undergone benchmarking as part of the IAEA normal and 
accident condition round robin calculations. More benchmarking is anticipated 
under GIF VHTR collaborations 

  PARFUME has been useful in a variety of applications including evaluation of 
fabrication specifications, analysis of tests and predictions of reactor 
performance 

  As the NGNP/AGR fuels program continues, there will be opportunities to test 
many of the models, especially under accident conditions 

  Much of the physics underlying PARFUME has been captured in a soon to be 
released HTR Factbook to be issued by IAEA in late 2009/early 2010 


